Global Power domination of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global minus domination in graphs

a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...

متن کامل

Generalized power domination of graphs

In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...

متن کامل

Global minus Domination in Graphs

A function f : V (G) → {−1, 0, 1} is a minus dominating function if for every vertex v ∈ V (G), ∑ u∈N [v] f(u) ≥ 1. A minus dominating function f of G is called a global minus dominating function if f is also a minus dominating function of the complement G of G. The global minus domination number γ− g (G) of G is defined as γ − g (G) = min{ ∑ v∈V (G) f(v) | f is a global minus dominating functi...

متن کامل

Fractional global domination in graphs

Let G = (V, E) be a graph. A function g : V → [0, 1] is called a global dominating function (GDF ) of G, if for every v ∈ V, g(N [v]) = ∑ u∈N [v] g(u) ≥ 1 and g(N(v)) = ∑ u/ ∈N(v) g(u) ≥ 1. A GDF g of a graph G is called minimal (MGDF ) if for all functions f : V → [0, 1] such that f ≤ g and f(v) 6= g(v) for at least one v ∈ V , f is not a GDF . The fractional global domination number γfg(G) is...

متن کامل

Global Domination in Planar Graphs

For any graph G = (V, E), D  V is a global dominating set if D dominates both G and its complement G . The global domination number g(G) of a graph G is the fewest number of vertices required of a global dominating set. In general, max{(G), (G )} ≤ g(G) ≤ (G)+(G ), where (G) and (G ) are the respective domination numbers of G and G . We show, when G is a planar graph, that g(G) ≤ max{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1770/1/012065